The Clearance delivery controller is responsible for providing departing aircraft with their IFR clearance. It is not something to be taken lightly. The smooth flow of all traffic depends on these clearances. If a clearance is incorrect another controller down the line will have to amend it, and potentially distract the pilot from his flying, while if the error would have been corrected before take-off the pilot would have had all the time to amend his plan, and not have anything to worry about when in the air.
In light of the above respecting the following guidelines is essential.
In addition to the general guidelines a Clearance delivery controller must:
Firstly you'll need the following information:
Elements of a Clearance:
A Clearance shall include the following items which is usualy abbreviated with CRADS:
The following items may also be added:
A clearance limit is the point to which an aircraft is granted a clearance. This may be:
A clearance limit is the point to which an aircraft is granted an air traffic control clearance and shall be specified by naming:
Controllers should endeavour to clear an aircraft according to the route requested. Sometimes this may not be possible, and the controller should explain the reason why when issuing the clearance. Make sure that the pilot using valid route with valid entry point.
Normally, the cruising level in the Flight plan is to be allocated. If that level is not available, the nearest appropriate level should be allocated.
From 3000ft up to FL200 using Quadrantal Rules
Above FL200 the semi-circular rule shall apply. Flight levels 200, 220, 240, 260 and 280 shall be westbound; Flight levels 210, 230, 250, and 270 shall be eastbound.
Cruising levels at or above FL290 up to FL410 within RVSM airspace:
Westbound | Eastbound |
410 | |
400 | |
390 | |
380 | |
370 | |
360 | |
350 | |
340 | |
330 | |
320 | |
310 | |
300 | |
290 |
Contain Standard Instrument Departure procedure (SID), refer to aerodrome chart.
The 4-digit code the pilot sets his transponder to so that controllers can identify him on radar. There are various schemes for allocating squawk codes, some quite complicated using different code ranges depending on outbound track, level, etc and there are ranges in certain countries reserved for military low-level, air ambulance, search and rescue, police operation etc. However, when controlling on IVAO in ID division, the only requirement is that each aircraft is allocated a unique code (or at least unique in the surrounding airspace) so that it can be positively identified on radar or refer to local SOP if applicable.
You may find that adjacent controllers always use the same range of codes (as in the real world) - so pick a range you will use and issue the first one to the first aircraft you clear and increment it for each subsequent aircraft. Remember that squawk codes are 4-digit octal numbers, so each digit can only be 0-7. Do not use any of the emergency codes (7500, 7600, 7700).
GIA734 is an Garuda Indonesia Boeing 737-400, Jakarta to Surabaya via airways at FL330.
Remember, his Clearance must contain:
On Initial Contact with WIII_DEL
GIA734 : "Soeta Tower, Indonesia 734 radio check !"
WIII_TWR : "Indonesia 734, Soeta Tower, read you 5 by 5"
GIA734 : "Soeta Tower, Indonesia 734 with information DELTA, request IFR Clearence to Juanda Surabaya Flight Level 330, ready to copy"
WIII_TWR : "Indonesia 734, standby for clearance"
GIA734 : "Standby, Indonesia 734"
WIII_TWR : "Indonesia 734, ATC Clearance available!"
GIA734 : "Ready to copy, Indonesia 734"
WIII_TWR : "Indonesia 734, clear IFR to Juanda Airport Flight, via G461, flight level 330, follow Halim one juliet departure runway 25 Right, squawk 7201"
GIA734 : "Cleared IFR to Juanda Airport Flight, via G461, flight level 330, follow Halim one juliet departure, squawk 7201, Indonesia 734"
WIII_TWR : "Indonesia 734, readback corect, contact ground 121.750 for pushback"
GIA734 : "Contact ground 121.750, Indonesia 734"
Example of a VFR Departure Clearance:PKIND is a Cessna 182, Halim to Bandung, at VFR altitude.
Remember, his Clearance must contain:
PKIND: "Halim Tower, PKIND radio check!"
WIHH_TWR: "Read you 5 by 5"
PKIND: "Halim Tower, PKIND with information Oscar, General Aviation Appron, POB 2, request VFR clearance to Hussein"
WIHH_TWR: "PKIND clear to Hussein, maintain VFR at or below 5000ft, squawk 1251"
PKIND: "Clear to Hussein, maintain VFR at or below 5000ft, squawk 1251"
WIHH_TWR: "Readback correct, call when ready for taxi"
PKIND: "Wilco"
Example of a VFR Traffic Pattern Clearance:PKIND is a Cessna 182, traffic pattern at Soekarno Hatta.
Remember, his Clearance must contain:
PKIND: "Soeta Tower, PKIND, radio check"
WIII_TWR : "PKIND, read you 5 by 5"
PKIND : "Jakarta Tower, PKIND with information November, Cessna 182,General Aviation Apron, POB 2, request clearance for local patern circuit"
WIII_TWR : "PKIND, clear standard pattern circuit rwy 25R,1500ft AGL (above ground level) info B, squawk 1233"
PKIND: "Clear standard patern circuit rwy 25R, 1500ft AGL, info B, squawk 1233, PKIND"
WIII_TWR : "Readback correct, advice for taxi"
PKIND: "Call you for taxi, PKIND"
Another obligation on IVAO is to update the cleared waypoint and cleared altitude of the aircraft. The format to be used is as follows:
In Cleared Altitude/FL (F8) enter the initial altitude assigned in the clearance/SID;
In Cleared Waypoint (F5) enter the SID given;
As a clearance controller, we recommend you set your altitude filter to 000 <-> 030;
Set your IN/OUT box to only display traffic departing the airport you are covering (e.g. WIII). Set your ATC list to show all facilities of the airport you are covering as well as the appropriate area sector.
Ground Movement controllers are responsible for issuing information and instructions to aircraft under their control to achieve a safe, orderly and expeditious flow of air traffic and to assist pilots in preventing collisions between aircraft moving on the apron and aircraft and vehicles, obstructions and other aircraft on the manoeuvring area (excluding the runways and their access points).
Apron - The part of an aerodrome provided for the stationing of aircraft for the embarkation and disembarkation of passengers, for loading and unloading of cargo and for parking.
Manoeuvring Area - The part of an aerodrome provided for the take-off and landing of aircraft and for the movement of aircraft on the surface excluding the apron and any part of the aerodrome provided for the maintenance of aircraft.
Ground controllers will also issue IFR clearances when Delivery is not open, or doesn't exist at the airport.
In short the job of a Ground controller is to get aircraft from the aprons to the runways and back safely, with minimal delay. In conditions of low visibility they may be called upon to provide guided taxi, though one must be very careful as some scenery won't match perfectly with your sector file.
In addition to the general guidelines an Apron or Ground controller must:
Firstly you'll need the following information:
The movements of aircraft, persons or vehicles on the menoeuvring area and the movement of aircraft on the apron are at all times subject to permission from the Ground Movement Controller. Responsibility on the apron is limited to providing advice and instructions to assist prevention of collisions between moving aircraft.
Vehicles that are moving along a taxiway shall give way at all times to aircraft taxying except emergency services vehicles providing assistance to an aircraft in distress.
Pushback:After recieving clearance from Delivery, aircraft will contact for pushback. Supplementary instructions may be given if required (e.g. "Push facing south after Batavia 737 crosses left to right").
GIA734: "Ground, Indonesia 734 gate F22, request push and start"
WIII_GND: "Indonesia 734, push and start is approved, facing north, call for taxi""
GIA734: "Push and start approved facing north, will call for taxi, Indonesia 734"
When the pilot of an aircraft requests start-up or taxi, the following information shall be given:
The items which are known to have been received may be omitted.
(If the pilot calls up and says he has "information Alpha", we can assume he already knows the runway in use, surface wind, air temperature, QNH and significant met conditions because they are on the ATIS).
It is important that taxi instructions are clear and concise. The visibility from a flight deck is limited so the pilot is dependant to a large degree upon Ground control to assist him in determining the correct taxi route to be followed.
Heavy aircraft are not to be given instructions that would require the use of more than normal power for taxiing.
If the aircraft requred to cross the runway, instruct the aircraft to contact Tower
Some taxi clearance examples:
GIA734 is a Boeing 737, just pushed back from gate F22 at Soekarno Hatta, runway 25 is in use.
GIA734: "Soeta Ground, Indonesia 734, ready for taxi"
WIII_GND: "Indonesia 734, taxi holding position N1, runway 25R, via NC3 NP2"
GIA734: "Taxi holding position N1, runway 25R, via NC3 NP2, Indonesia 734"
Aircraft should be handed off to the tower frequency, as they are approaching the holding point to the runway.
WIII_GND: "Indonesia 734, Contact Soeta Tower, 118.750"
GIA734: "Contact Soeta Tower 118.75, thanks"
AWQ7399 is an Airbus A320, just landed runway 25R at Soekarno Hatta, vacated via N4.
AWQ7399: "Soeta Ground, Wagon Air 7399, vacated 25R on N4, Request taxi to gate"
WIII_GND: "Wagon Air 7399, taxi to gate D41 via N4 NC4"
AWQ7399: "Taxi to gate D41 via N4 NC4, Wagon Air 7399"
AWQ7399: "Wagon Air 7399, at gate D41, shutting down"
WIII_GND: "Wagon Air 7399, roger, flight plan closed 0517Z, thanks for flying"
Note - ATC doesn't clear aircraft for shutdown, that is the pilots responsibility. Flight plans closing is not mandatory.
With the release of IvAi, which enables you to use your flight simulator to control visually, ground control can become extremely realistic, especially as you will most likely see exactly where the aircraft is located as there are no sector errors. On the other hand FS scenery becomes an issue, so always interpret what you see with a pinch of salt. If tower is also using IvAi there is no need to relay runway vacating messages.
As a ground controller, we recommend you set your altitude filter to 000 <-> 030
Set your IN/OUT box to only display traffic arriving and departing the airport you are covering (e.g. WIII). Set your ATC list to show all facilities of the airport you are covering as well as the appropriate area sector.
Tower controllers are responsible for issuing information and instructions to aircraft under their control to achieve a safe, orderly and expeditious flow of air traffic and to assist pilots in preventing collisions between aircraft flying in, and in the vicinity of the aerodrome traffic zone and aircraft taking off and landing.
In the absence of Ground and delivery controllers, Tower controllers will complete the tasks detailed in the Ground and Delivery SOP's.
It's the Tower controller that defines the active runways for a given airport, and ultimately decides who lands on which runway. The tower controls the upflow of traffic into controlled airspace, and is an essential link in the chain of Air Traffic services. It is essential for Tower controllers to maintain constant contact with the Approach Radar/Area controller, as well as ground/delivery.
The tower is responsible for all active runways, and for traffic operating in and within the vicinity of the Aerodrome Traffic Zone (up to 2.5nm diameter, Surface up to 2000 AAL). Important: In most airports, the tower controller will be responsible for the runway access points - be sure to check the local procedures.
In addition to the general guidelines a Tower controller must:
Controllers are to provide minimum services according to the classification of the airspace within which the aerodrome and associated aerodrome traffic zone is located.
Class A - Effects of Weather
At aerodromes situated in Class A airspace, ATC shall inform Special VFR flights when the reported meteorological visibility is less than 10 km. Pilots must be asked their intentions and, if necessary, IFR clearances given. Controllers should note that in such conditions continued flight according to SVFR is permitted if the pilot is appropriately licensed.
Class D - Effects of Weather
ATC shall advise pilots of aircraft, other than helicopters, intending to operate under VFR, inbound to or outbound from aerodromes in Class D airspace, if the reported meteorological visibility reduces to less than 5000 m and/or the cloud ceiling is less than 1500 feet.
The controller should then ask the pilot which type of clearance is required and then give it to the pilot.
Additionally, the controller shall not issue any further VFR clearances to aircraft, other than helicopters, wishing to enter the airspace for the purposes of taking off or landing at any airfield, situated within the Class D control zone, where the reported meteorological visibility is less than 5000 m.
Firstly you'll need the following information:
The term "runway-in-use" is used to indicate the particular runway or landing direction selected as the most suitable. Normally, it should be the runway most closely aligned to the surface wind direction. (Aircraft take-off into the wind) Where the surface wind conditions are light and variable, the 2000ft wind should be taken into account.
When selecting the runway-in-use, other factors such as traffic pattern, the length of runways or landing runs and the approach aids available should be taken into account. At certain aerodromes more than one runway may be in use at any one time (Soekarno Hatta for example).
Should a change of runway be necessary, Tower must inform approach control, area control, and aircraft under their control.
If ground is online traffic will be handed over at or shortly before the holding position for the selected runway. If no ground is online aircraft should give you a call just before, or after pushback. In this situation you would assume the duties of the Ground controller.
Line-up instructions may be issued to more than one aircraft at different points on the same or crossing runways provided that:
When line-up will take place at a position other than for a full-length runway departure the intermediate "holding point" designator shall be included in the line-up instruction.
The tower controller is responsible for issuing take-off clearance and advising pilots of any variations to the surface wind or other significant changes to met conditions. (In the real world, a 2 minute wind average is passed to pilots - For the purpose of IVAO, the wind indicated in the METAR should be passed unless the pilot requests an Instant wind read out. In this case, the wind indicated in the box also displaying the QNH should be passed, with the word "instant" preceeding it.
When multiple runways are in use and possibility of confusion exists, the take-off clearance shall include the designator of the departure runway. "Runway 25L, cleared for take-off".
Take-off clearance may be issued when aircraft is at or approaching the holding point for a runway.
If the take-off clearance has to be cancelled before the take-off run has commenced, the pilot shall be instructed to hold position and acknowledge the instruction. "GIA533, hold position, Cancel take-off - I say again, GIA533 cancel takeoff acknowledge".
If the take-off run has commenced and there is an important safety reason as to why the aircraft cannot take off, the pilot shall be instructed to stop immediately. "GIA533, stop immediately - I say again GIA533, stop immediately - acknowledge".
Some phraseology examples:
"GIA533, line up and wait runway 25R"
"MDL800, via S6, line up and wait runway 07R"
"GIA88, after traffic landing, line up and wait runway 25R"
"BTV788, behind rolling traffic, line up and wait runway 25L"
"SIA56, wind 200 at 18, runway 25R clear for take off"
If for any reason, you need an aircraft to take off immediately, the instruction "Cleared for immediate take-off" may be added. It is expected that the pilot will act as follows:
You should always ask the pilot before giving the clearance if he is able to accept an immediate take-off.
Aircraft should be handed off to the next sector once airborne, preferably no later than 2000ft.
Traffic Circuit
Position a - Aircraft reports on "downwind" leg when abeam upwind end of the runway.
Position b - Aircraft reports "base" leg on completion of the run on to Base Leg.
Position c - Aircraft reports "Final" on the completion of the turn on the final approach not more than 4 Nm from the approach end of the runway. Clearance to land issued here.
Position d - Aircraft reports "long final" (Between 8 and 4 miles) when aircraft is on a straight-in approach.
Aircraft joining the circuit:
Clearance to enter the circuit is issued when the aircraft is still some distance from the airfield to enable the pilot to conform with the traffic circuit. Information concerning landing direction or runway in use and any other necessary instructions are given at the same time.IFR Inbounds:
When multiple runways are in use, the landing runway clearance shall include the runway designator.
"Wind 250 degrees 8 knots, runway 25R clear to land".
Unless specific procedures have been approved, a landing aircraft shall not be permitted to cross the beginning of the runway on its final approach until a preceding aircraft, departing from the same runway, is airborne.
In the real world, a 2 minute wind average is passed to pilots - For the purpose of IVAO, the wind indicated in the METAR should be passed unless the pilot requests an Instant wind read out. In this case, the wind indicated in the box also displaying the QNH should be passed, with the word "instant" preceeding it.
Missed Approach:
If the runway is occupied by another aircraft or vehicle when an aircraft is on final approach, it must be instructed to carry out a missed approach. The correct phraseology to be used:
"PKFDI, go around, I say again, go around, acknowledge"
"Going around, PKFDI"
Aircraft should then be told to follow the published missed approach procedure, or an alternative clearence given which has been provided by the approach controller.
"PKFDI, follow the standard missed approach procedure, contact Approach, 119.75"
Ensure you inform the Approach controller as soon as the aircraft begins the missed approach procedure.
With the release of IvAi, which enables you to use your flight simulator to control visually ground control can become extremely realistic, especially as you will most likely see exactly where the aircraft is located as there are no sector errors. On the other hand FS scenery becomes an issue, so always interpret what you see with a pinch of salt as far as aircraft on the ground are concerned.
We recommend you switch Ground detail, VORs, NDBs and Runway centrelines on.
Set your altitude filter to the top of your Aerodrome Traffic Zone + 1500ft (e.g. ATZ is SFC-2000; you would set the filter to SFC-3500ft), and use a range between 12 and 25nm.
An approach control service is an ATC service for any aircraft which is not recieving an aerodrome control service which is flying in or in the vicinity of the ATZ of that aerodrome whether or not the aircraft is flying by visual reference to the surface.
In the absence of any aerdrome control, Approach controllers will complete the tasks detailed in the Delivery, Ground and Tower SOP's
The Approach controller is responsible for all aircraft within approximately 40nm of the airport, up to a specified upper limit.
In addition to the general guidelines, a Centre controller must:
Co-ordination
Approach control shall co-ordinate with aerodrome control:
Transfer of Control
IFR flights operating with visual reference to the surface may be transferred to aerodrome control:
Transfer of communication
Approach may instruct IFR flights to establish communication with aerodrome when the aircraft has become number one to land and for following aircraft, when they are established on final approach and have been provided with appropriate seperation. Until those aircraft are flying with visual reference to the surface though, the responsibility for seperation between them is still with approach control. Aerodrome control cannot issue any instructions at that point which would reduce the seperation established by approach control.
Weather Information
As early as possible, the approach radar controller shall transmit the latest weather observations to aircraft on approach, except when this information has already been passed by another unit, or the pilot indicates that he has received it from the ATIS broadcast.
Obstacle Clearance
Obstacle clearance criteria are detailed on aerodrome approach charts. Refer to MSA and MVR of the aerodrome. These must be adhered to.
Information to aircraft
On commencement of radar vectoring to final approach the pilot is to be advised that he will be radar vectored to intercept the final approach and of:
Aircraft receiving a surveillance radar approach shall be given:
Terrain Clearance
RVA and RMACs indicate the minimum altitudes available to controllers when vectoring aircraft. Controllers should not use altitudes below those notified on the charts except when levels are allocated in accordance with specific procedures that are approved for use within the final approach area.
To avoid generating GPWS nuisance warnings, minimum altitudes higher than the terrain clearance minimum should be used.
Final Approach
Aircraft should not be vectored so as to be established on final approach less then 5nm from touchdown.
If it is necessary to vector an aircraft through the final approach track, the pilot should be notified.
Precision Approaches
Aircraft shall be vectored onto the localiser course or onto an appropriate (30 - 40 degrees) closing heading to enable the pilot to complete the turn onto the final approach track. The pilot should be instructed to report established on the localiser. When they do, they shall be cleared to descend on the glidepath or given an alternative clearance.
Non precision approaches
Controllers shall vector aircraft onto the final approach track or a heading to close at an angle not greater than 40 degrees offset. Whenever possible, the aircraft is to be established on the final approach track before the final approach fix to enable it to cross the final approach fix at the altitude/height specified in the notified procedure.
For procedures that are not supported by a DME, the controller shall pass a range check before clearing the aircraft for an approach. If a procedure is supported by a DME, a range check does not have to be passed at this time.
Visual Approach
To expedite traffic, IFR flights may be authorised to execute a visual approach if the pilot reports that he can maintain visual reference to the surface and:
Standard seperation between such aircraft and others shall still be applied.
Speed Control
Controllers may request pilots to increase or decrease speed in order to maintain separation and spacing between successive landing aircraft. Speed adjustments shall not be requested or applied after the aircraft has passed a point 4nm from the threshold on final approach. Controllers shall advise pilots when speed control is no longer required.
VFR and Special VFR flights
When sequencing of IFR flights is in operation, sufficient information is to be passed to pilots of VFR and Special VFR flights to enable them to integrate safely into the landing sequence. If it is necessary for a VFR flight to be given a radar vector, or specific routeing instructions, the pilot shall be instructed to advise the controller if the routeing or vector will prevent the pilot from remaining in VMC. If it is necessary for a Special VFR flight to be given radar vectors to establish it in the landing sequence, controllers shall ensure that vectors given do not preclude the responsibility for the pilot to remain clear of cloud and in sight of the surface and keep clear of obstacles by visual reference to the surface.
Surveillance Radar Approaches (SRA)
Aircraft making an SRA shall be reminded when on final approach to check their wheels.
The ranges at which SRAs terminate will vary.
SRA terminating at 2 miles:
SRA terminating at less than 2 miles:
Glide path and advisory height:
Advisory levels are initially calculated based either on the QNH datum or QFE datum and rounded up to the nearest 10ft. An adjustment is then made to compute advisory levels for approaches made using another datum.
Advisory levels shall be prefixed with an indication of the datum being used (height/altitude). Pilots conducting an approach based on QNH shall be passed the aerodrome/threshold elevation prior to commencing the final descent.
Missed Approaches
Aircraft shall be instructed to carry out a missed approach in any of the following circumstances:
Aircraft shall be advised to carry out a missed approach in any of the following circumstances:
Integration of VFR flights with IFR traffic
Flight rules:
The pilot is responsible for determining the Flight Rules under which he wishes to conduct his flight.
Control of VFR flights:
Although in Class D, E, F and G airspace separation standards are not applied, ATC has a responsibility to prevent collisions between known flights and to maintain a safe, orderly and expeditious flow of traffic. This objective is met by passing sufficient traffic information and instructions to assist pilots to see and avoid each other. It is accepted that occasionally when workload is high, the traffic information passed on
aircraft in Class F and G airspace may be generic rather than specific.Instructions issued to VFR flights in Class D airspace are mandatory. These may comprise routeing instructions, visual holding instructions and level restrictions in order to establish a safe, orderly and expeditious flow of traffic and to provide for the effective management of overall ATC workload.
For example, routeing instructions may be issued which will reduce or eliminate points of conflict with other flights, such as final approach tracks and circuit areas, with a consequent reduction in the workload associated with passing extensive traffic information. Visual Reference Points (VRPs) may be established to assist in the definition of frequently utilised routes and the avoidance of instrument approach and
departure tracks.Notwithstanding that VFR flights in Class E controlled airspace may operate without reference to ATC, it can be expected that the majority of flights will communicate with ATC and can be expected to comply with instructions issued as above.
When issuing instructions to VFR flights controllers should be aware of the over-riding requirements for the pilot to remain in VMC, to avoid obstacles and to remain within the privileges of his licence. This may result in the pilot requesting an alternative clearance, particularly in marginal weather conditions.
Radar controllers in particular should exercise extreme caution in radar vectoring VFR flights – a geographical routeing instruction is preferable. Prior to radar vectoring the controller must establish with the pilot the need to report if headings issued are not acceptable due to the requirements to remain in VMC, avoid obstacles, and comply with the low flying rules. Controllers should be aware that pilots of some VFR flights may not be sufficiently experienced to comply accurately with radar headings, or to recover to visual navigation after radar vectoring.
We recommend you use range rings set to 10nm and display VORs, NDBs (no name), Fixes (no name), airspace boundaries, Geographical data and runways. (Toggle airways, airport names, and SIDS/STARs as needed.)
Select altitude filter limits that include as a minimum:
Area control services comprise of air traffic services in airspace which is not under the jurisdiction of an approach or aerodrome control unit. The type of service to be provided depends on the class of airspace within which the aircraft is flying.
In the absence of any aerodrome and approach control, Area controllers will complete the tasks detailed in the Delivery, Tower and Approach Radar SOP's.
Area is responsible for the all the airspace within it's FIR which is not delegated to another unit. The lateral dimensions vary from sector to sector, see the information pages and the appropriate sector files. Area controllers take responsibility for every ATS unit within it's sector when the unit is not in operation. This means that if you are alone, you are ultimately responsible for every "active" position within your sector. Area controllers must therefore be familiar with the procedures of many different airports, which can be a rather big challenge.
In addition to the general guidelines, a Centre controller must:
Principles of Operation
An area control centre is divided into sectors which work in close liaison.
Co-ordination - Area Control Centres
Aircraft must not penetrate the airspace of another area control centre or sector unless prior co-ordination has taken place. The responsibility for initiating co-ordination rests with the controller of the sector transferring control.
Co-ordination - Approach control units
Approach control units are required to keep area control promptly advised of:
Speed Adjustment
Controllers may request pilots to increase/decrease speed in order to maintain the appropriate separation. Speed adjustment may also be utilised as a method of streaming aircraft prior to sequencing in the intermediate phase. The pilot should be advised when speed control is no longer required.
Position Reports
In order to reduce RTF communication, a pilot will make a position report only
Aircraft holding
When an aircraft is instructed to hold en-route it must always be given an onward clearance time. Aircraft must never be told that such holding is indefinite, and if it is not possible to make an accurate calculation immediately, the aircraft shall be given an onward clearance time requiring 10 to 15 minutes holding which must be amended to an accurate time before the period has elapsed.
Aircraft which will be delayed by 20 minutes or more before commencing an intermediate approach for landing shall be given an expected approach time together with their clearance to the holding facility. If an aircraft is to be delayed less than 20 minutes, no expected approach time is to be passed.
We recommend you use range rings set to 10nm, VORs, NDBs (no name), All airspace boundaries, runways. and relevant airways turned on. Toggle airport names, SIDs and STARs as needed.
Select altitude filter limits that include as a minimum:
Flight Service Station comes in two variations: Flight Service Station at Aerodromes and Flight Service Station at Area Control Centres.
Flight Information Service is provided at an aerodrome to give information for the safe and efficient conduct of flights in the Aerodrome Traffic Zone. From the information received, pilots decide the appropriate course of action to be taken to ensure the safety of flight.
A Flight Service Station Officer (FSSO) at an aerodrome has the following responsibilities:
Flight Service Station is provided at an ACC to give information for the safe and efficient conduct of flights in class G airspace within the ID Flight Information Regions. FSSOs may pass traffic information to anyone who calls on the RT. From the information provided, pilots decide the appropriate course of action to be taken to ensure the safety of flight.
A Flight Service Station Officer (FSSO) at an ACC has the following responsibilities:
Flight Station Service centres are responsible for providing service to all aircraft within their respective regions. These regions do not match FIRs. Flight Station Services at aerodromes are responsible for the aerodrome traffic zone at the airfield.
In addition to the general guidelines a FISO must:
A FSS is a non radar service provided either separately or in conjunction with other services. Under a FSS, the following conditions apply:
Flight Service Station Centres don't have radar, and therefore we recommend you completely obstruct your scope with the COMM, and I/O windows.
We recommend Aerodrome Flight Service Station use the same settings as towers would.